Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
1.
Experimental & Molecular Medicine ; : 478-486, 2009.
Article in English | WPRIM | ID: wpr-107288

ABSTRACT

Osteoblasts can synthesize the insulin-like growth factors (IGFs) and the IGF-binding proteins (IGFBPs), which may either enhance or attenuate IGF-stimulated bone cell proliferation. Since estrogen induced osteoblastic differentiation and proliferation through an estrogen-responsive gene in target cells, we investigated the effects of estrogen on IGFBP-6 expression in the human osteoblastic-like cell line SaOS-2. Expressions of IGFBP-6 protein and mRNA increased 2.8 and 2-fold, respectively, in the presence of 17-beta-estradiol (E2) (0.01 to 1 micrometer) and estrogen receptor (ER) in SaOS-2 cells. On the other hand, E2 induced a 2-fold increase in SaOS-2 cell proliferation. To identify genomic sequences associated with estrogen responsiveness, the 5'-promoter region (-44 to +118) of the IGFBP-6 gene was cloned into a chloramphenicol acetyltransferase (CAT) reporter vector. E2 induced a 3-fold increase in CAT activity in SaOS-2 cells transiently transfected with this construct. Identification of the estrogen-responsive element (ERE) [5'-CCTTCA CCTG-3'] (-9 to +1) in this IGFBP-6 gene promoter region was confirmed using electromobility shift assays and deletion analysis. This functional ERE was important for E2-induced trans-activation of the IGFBP-6 gene. These results demonstrate that E2 exhibits a positive effect on IGFBP-6 gene transcription through estrogen-liganded ER binding to the functional ERE in the IGFBP-6 gene promoter in SaOS-2 cells.


Subject(s)
Humans , Blotting, Western , Cell Proliferation , Chloramphenicol O-Acetyltransferase/metabolism , Electrophoretic Mobility Shift Assay , Estradiol/pharmacology , Estrogen Receptor alpha/genetics , Estrogens/pharmacology , Insulin-Like Growth Factor Binding Protein 6/genetics , Osteoblasts/drug effects , Promoter Regions, Genetic/genetics , RNA, Messenger/genetics , Response Elements , Reverse Transcriptase Polymerase Chain Reaction , Transcriptional Activation , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL